Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neural Eng ; 20(1)2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36548995

RESUMO

Objective:Flexible Electrocorticography (ECoG) electrode arrays that conform to the cortical surface and record surface field potentials from multiple brain regions provide unique insights into how computations occurring in distributed brain regions mediate behavior. Specialized microfabrication methods are required to produce flexible ECoG devices with high-density electrode arrays. However, these fabrication methods are challenging for scientists without access to cleanroom fabrication equipment.Results:Here we present a fully desktop fabricated flexible graphene ECoG array. First, we synthesized a stable, conductive ink via liquid exfoliation of Graphene in Cyrene. Next, we established a stencil-printing process for patterning the graphene ink via laser-cut stencils on flexible polyimide substrates. Benchtop tests indicate that the graphene electrodes have good conductivity of ∼1.1 × 103S cm-1, flexibility to maintain their electrical connection under static bending, and electrochemical stability in a 15 d accelerated corrosion test. Chronically implanted graphene ECoG devices remain fully functional for up to 180 d, with averagein vivoimpedances of 24.72 ± 95.23 kΩ at 1 kHz. The ECoG device can measure spontaneous surface field potentials from mice under awake and anesthetized states and sensory stimulus-evoked responses.Significance:The stencil-printing fabrication process can be used to create Graphene ECoG devices with customized electrode layouts within 24 h using commonly available laboratory equipment.


Assuntos
Eletrocorticografia , Grafite , Camundongos , Animais , Eletrocorticografia/métodos , Eletrodos Implantados , Encéfalo/fisiologia , Mapeamento Encefálico/métodos
2.
Anal Chim Acta ; 1146: 184-199, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33461715

RESUMO

The COVID-19 global pandemic of 2019-2020 pointedly revealed the lack of diagnostic solutions that are able to keep pace with the rapid spread of the virus. Despite the promise of decades of lab-on-a-chip research, no commercial products were available to deliver rapid results or enable testing in the field at the onset of the pandemic. In this critical review, we assess the current state of progress on the development of point-of-care technologies for the diagnosis of viral diseases that cause pandemics. While many previous reviews have reported on progress in various lab-on-a-chip technologies, here we address the literature from the perspective of the testing needs of a rapidly expanding pandemic. First, we recommend a set of requirements to heed when designing point-of-care diagnostic technologies to address the testing needs of a pandemic. We then review the current state of assay technologies with a focus on isothermal amplification and lateral-flow immunoassays. Though there is much progress on assay development, we argue that the largest roadblock to deployment exists in sample preparation. We summarize current approaches to automate sample preparation and discuss both the progress and shortcomings of these developments. Finally, we provide our recommendations to the field of specific challenges to address in order to prepare for the next pandemic.


Assuntos
COVID-19/diagnóstico , Pandemias , Sistemas Automatizados de Assistência Junto ao Leito/tendências , Testes Imediatos/tendências , Humanos , Dispositivos Lab-On-A-Chip
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...